Приложение

к программе СПО 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий

МИНИСТЕРСТВО ОБРАЗОВАНИЯ СВЕРДЛОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СВЕРДЛОВСКОЙ ОБЛАСТИ «БОГДАНОВИЧСКИЙ ПОЛИТЕХНИКУМ»

УТВЕРЖДАЮ

Директор

ГАПОУ

CO

«Богдановичекий политехникум»

(30) /06

В.Д. Тришевский 2025г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.06 «ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ»

Специальность 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий

Форма обучения заочная Срок обучения 3 года 10 месяцев Программа рассмотрена на заседании ПЦК технологических и социально-экономических дисциплин ГАПОУ СО «Богдановичский политехникум» Протокол № 11 от « 30 » июня 2025 г. Председатель цикловой комиссии /И.А. Озорнина/

Рабочая программа учебной дисциплиныОП.06 «Физическая и коллоидная химия» разработана на основе Федерального государственного образовательного стандарта среднего профессионального образования (далее — ФГОС СПО) по специальности 18.02.05 «Производство тугоплавких неметаллических и силикатных материалов и изделий», утвержденного приказом Министерства просвещения № 904 от 30 ноября 2023г.(далее — ФГОС СПО), примерной основной образовательной программы по соответствующей специальностии с учетом запросов регионального рынка труда.

Организация-разработчик:

Государственное автономное профессиональное образовательное учреждение Свердловской области «Богдановичский политехникум»

Авторы:

Глебова А.В., преподаватель первой квалификационной категории, ГАПОУ СО «Богдановичский политехникум»

СОДЕРЖАНИЕ

1.	ОБЩАЯ ХАРАКТЕРИСТИКА ПРИМЕРНОЙ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2.	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	5
3.	УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	10
4.	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ЛИСШИПЛИНЫ	12

1 ОБЩАЯ ХАРАКТЕРИСТИКА ПРИМЕРНОЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП. 06«Физическая и коллоидная химия»

1.1. Место дисциплины в структуре основной образовательной программы:

Учебная дисциплина «Физическая и коллоидная химия» является обязательной частью общепрофессионального цикла примерной образовательной программы в соответствии с ФГОС СПО по специальности 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий.

Особое значение дисциплина имеет при формировании и развитии ОК 01, ОК 02, ОК 04, ОК 05, ОК 06, ОК 07, ОК 09, ПК 1.1, ПК 1.2, ПК 1.4, ПК 3.3.

1.2. Цель и планируемые результаты освоения дисциплины:

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания

		щимися осваиваются умения и знания
Код 1	Умения	Знания
ПК, ОК		
ПК 1.1, ПК1.2,	- выполнять расчеты	- закономерности протекания
ПК 1.4, ПК 3.3.	электродных потенциалов,	химических и
OK 01, OK02,	электродвижущей силы	физико-химических процессов;
OK 04, OK 05,	гальванических элементов;	- законы идеальных газов;
ОК 06, ОК 07,	- находить в справочной	- механизм действия катализаторов;
OK 09,	литературе показатели физико-	- механизмы гомогенных и
	химических свойств веществ и	гетерогенных реакций;
	их соединений;	- основы физической и коллоидной
	- определять концентрацию	химии, химической кинетики,
	реагирующих веществ и	электрохимии, химической
	скорость реакций;	термодинамики и термохимии;
	- строить фазовые диаграммы;	- основные методы интенсификации
	- производить расчеты:	физико-химических процессов;
	параметров газовых смесей,	- свойства агрегатных состояний
	кинетических параметров	веществ;
	химических реакций,	- сущность и механизм катализа;
	химического равновесия;	- схемы реакций замещения и
	- рассчитывать тепловые	присоединения;
	эффекты и скорость химических	- условия химического равновесия;
	реакций;	- физико-химические методы анализа
	- определять параметры	веществ,
	каталитических реакций;	- применяемые приборы;
		- физико-химические свойства
		сырьевых материалов и продуктов

¹ Приводятся только коды компетенций общих и профессиональных, для освоения которых необходимо освоение данной дисциплины.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов		
Суммарная учебная нагрузка во взаимодействии с преподавателем	136		
Промежуточная аттестация проводится в форме экзамена	6		
Самостоятельная работа	2		
Консультации	2		
Объем образовательной программы учебной дисциплины	126		
в т.ч. в форме практической подготовки	74		
в том числе:			
теоретическое обучение	52		
лабораторные работы	30		
практические занятия	44		
курсовая работа (проект)	-		

2.2 Тематический план и содержание учебной дисциплины

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем, акад.ч/ в том числе в форме практиче ской подготов ки, акад.ч	Коды компетенций, формировани ю которых способствует элемент программы
1	2	3	4
Раздел 1 ФИЗИЧ Тема 1.1.		90/54	OK 01, OK02,
лема 1.1. Агрегатные состояния вещества	Содержание учебного материала 1 Газообразное состояние: Идеальный газ. Газовые законы. Молекулярно-кинетическая теория газов. Реальные газы. Уравнение Ван-дер-Ваальса. Сжижения газов. Эффект Джоуля-Томсона. 2 Характеристика жидкого состояния вещества: поверхностное натяжение, вязкость жидкостей, испарение и кипение жидкостей. 3 Кристаллическое и аморфное твердое состояние. Твердое состояние вещества: признаки, кривые охлаждения жидкостей, основные типы кристаллических решеток, упругость пара над твердыми телами.	6	OK 01, OK02, OK03, OK 04, OK 05, OK 06, OK 07, OK 09, ПК 1.1, ПК 1.2, ПК 1.4, ПК 3.3.
	В том числе, практических занятий и лабораторных работ	12	
	Практическое занятие 1 Расчеты параметров газовых смесей по законам идеального газа	6	
	Практическое занятие 2 Расчеты параметров жидкостей	2	
T 10	Лабораторная работа 1Выращивание кристаллов в лабораторных условиях	4	OK 01, OK02,
Тема 1.2 Основные законы химической термодинамики	Содержание учебного материала 1 Первый закон термодинамики. Термодинамические процессы и термодинамическое равновесие. Работа, внутренняя энергия и теплота. Энтальпия. Взаимосвязь работы, теплоты и изменения внутренней энергиии 2 Теплоемкость: удельная, объемная, молярная. Фазовые переходы первого рода. Зависимость внутренней энергии и энтальпии от температуры 3 Термохимия. Стандартные тепловые эффекты. Закон Гесса, его следствия, применение для определения тепловых эффектов. Зависимость теплового эффекта реакции от температуры.	10	ОК 01, ОК02, ОК03, ОК 04, ОК 05, ОК 06, ОК 07, ОК 09, ПК 1.1, ПК 1.2, ПК 1.4, ПК 3.3.

	Уравнение Кирхгофа.		
	4 Второй закон термодинамики. Связь энтропии с параметрами состояния.		
	Объединенное уравнение первого и второго законов термодинамики.		
	5 Связь энергии Гиббса и энергии Гельмгольца с параметрами состояния. Изменение		
	стандартной энергии Гиббса при химических реакциях. Критерии направленности процессов и		
	равновесия в системах переменного состава. Химический потенциал		
	В том числе, практических занятий и лабораторных работ	14	
	Практическое занятие 3 Определение теплоёмкости веществ	4	
	Практическое занятие 4 Выполнение расчетов по определению теплового эффекта химической реакции. Определение возможности протекания реакции при стандартных условиях.	6	
	Лабораторная работа 2 Определение теплоты растворения вещества и теплоты нейтрализации.	4	
Тема 1.3	Содержание учебного материала	10/6	OK 01, OK02,
Химическое равновесие	1 Закон действующих масс. Константа химического равновесия. уравнения изотермы химической реакции	4	OK03, OK 04, OK 05, OK 06,
	2 Понятие о химическом сродстве веществ. Зависимость константы равновесия от температуры. Химическое равновесие в гетерогенных реакциях.		ОК 07, ОК 09, ПК 1.1, ПК 1.2,
	В том числе, практических занятий и лабораторных работ	6	ПК 1.4, ПК 3.3.
	Практическое занятие 5 Вычисление константы равновесия для реакций в гомогенных и гетерогенных системах с использованием принципа Ле — Шателье	4	
	Практическое занятие 6 Расчет состава равновесной смеси	2	
Тема 1.4	Содержание учебного материала	14/8	OK 01, OK02,
Фазовое равновесие	1 Основные понятия фазового равновесия. Равновесие в однокомпонентной системе. Основные типы одно-, двух- и трехкомпонентных диаграмм состояния.	6	OK03, OK 04, OK 05, OK 06,
	2 Двухкомпонентные системы с образованием химических соединений. Условия термодинамического равновесия в многокомпонентной системе.		ОК 07, ОК 09, ПК 1.1, ПК 1.2,
	Правило фаз Гиббса. Равновесные состояния при фазовых переходах. Уравнение Клайперона- Клаузиуса.		ПК 1.4, ПК 3.3.
	В том числе, практических занятий и лабораторных работ	8	
	Практическое занятие 8 Изучение однокомпонентной диаграммы H ₂ O (лед-вода-пар)	2	
	Практическое занятие 9 Физико-химический анализ на примере диаграммы состояния воды. Графический и аналитический метод расчета количественного соотношения фаз в гетерогенные системах.	2	

	Практическое занятие 10 Проведение расчетов с использованием фазовых диаграмм состояния	2	
	с помощью правила фаз и правила рычага и их физико-химический анализ		-
	Практическое занятие 11 Проведение расчетов с использованием фазовых диаграмм состояния	2	
m 4.5	с помощью правила фаз и правила рычага и их физико-химический анализ	1016	OTC 01 OTC00
Тема 1.5	Содержание учебного материала	10/6	OK 01, OK02,
Электрохимичес	1 Основные понятия. Термодинамическая теория ЭДС. Обратимые электроды.	4	OK03, OK 04,
кие процессы	Электрохимические цепи. ЭДС электрохимических цепей		OK 05, OK 06,
	Электролиз. Законы Фарадея.		ОК 07, ОК 09,
	2 Электрофизические свойства силикатов в различных состояниях. Диэлектрические и		ПК 1.1, ПК 1.2
	магнитные свойства силикатов.		ПК 1.4, ПК 3.3
	В том числе, практических занятий и лабораторных работ	6	
	Практическое занятие 12 Вычисление электродных потенциалов и ЭДС гальванических элементов	2	
	Лабораторная работа 3 Определение рН растворов электролитическим методом.	4	
	Потенциометрическое титрование по методу нейтрализации		
Гема 1.6	Содержание учебного материала	16/8	☐ OK 01, OK02,
Химическая	1 Основные понятия. Кинетика простых реакция. Реакции первого и второго порядка.	6	ОК03, ОК 04,
кинетика и	Кинетика сложных реакций. Зависимость скорости химической реакции от температуры.		OK 05, OK 06,
катализ	Правило Вант – Гоффа. Уравнение Аррениуса.		OK 07, OK 09,
	2 Основные понятия катализа. Механизмы каталитических реакций. Гомогенный катализ.		ПК 1.1, ПК 1.2
	Гетерогенный катализ.		ПК 1.4, ПК 3.3
	3 Твердофазовые реакции. Виды и физико-химические факторы, определяющие механизм		
	твердофазовых реакций.		
	В том числе, практических занятий и лабораторных работ	8	
	Практическое занятие 13 Определение кинетических параметров химических реакций.	_2	
	Практическое занятие 14 Вычисление концентрации реагирующих веществ и скорости	2	
	химической реакции с помощью закона действия масс (на различных видах реакций)	<u> </u>	
	Практическое занятие 15 Определение параметров каталитических реакций. Вычисление	4	
	концентрации реагирующих веществ и скорости химической реакции с помощью закона		
	действия масс (на различных видах реакций)		
Раздел 2 ОСНОВ	вы коллоидной химии	36/18	
Гема 2.1	Содержание учебного материала	20/10	OK 01, OK02,
Введение в	1 Признаки объектов коллоидной химии. Классификация дисперсных систем.	10	OK03, OK 04,

физикохимию	2 Поверхностное натяжение. Полная поверхностная энергия. Уравнение Гиббса-Гельмгольца.		OK 05, OK 06,
поверхностных	Общие свойства поверхностных слоев.		OK 07, OK 09,
явлений	3 Адсорбция. Сорбция, её виды (адсорбция на границе жидкость-газ, жидкость-жидкость,		ПК 1.1, ПК 1.2,
	обменная адсорбция и др.). Практическое применение процессов адсорбции.		ПК 1.4, ПК 3.3.
	Адгезия, смачивание и растекание. Уравнение Дюпре-Юнга.		
	4 Дисперсность и термодинамические свойства тел. Микрогетерогенные системы: суспензии,		
	эмульсии, пены, аэрозоли, порошки. Коллоидно-дисперсные процессы в силикатных системах.		
	Капиллярные явления. Влияние дисперсности на внутреннее давление в телах.		
	5 Методы получения дисперсных систем: диспергирование и конденсация Новейшие методы		
	подготовки тонкодисперсных однородных порошков		
	В том числе, практических занятий и лабораторных работ	10	
	Лабораторная работа 5 Определение поверхностного натяжения жидкости	4	
	Лабораторная работа 6Получение золей методами конденсации и диспергирования.	6	
Тема 2.2	Содержание учебного материала	12/8	OK 01, OK02,
Коллоидные	1 Получение коллоидных систем. Коллоидное состояние. Очистка коллоидных систем.	4	ОК03, ОК 04,
системы и их	Строение коллоидной частицы – мицеллы гидрозоля. Двойной электрический слой.		OK 05, OK 06,
свойства	Оптические свойства коллоидных систем: явление рассеяния света, поглощение света и окраска золей.		ОК 07, ОК 09, ПК 1.1, ПК 1.2,
	Молекулярно-кинетические свойства коллоидных систем. Седиментация.		ПК 1.4, ПК 3.3.
	В том числе, практических занятий и лабораторных работ	8	
	Лабораторная работа 7Электрокинетические явления. Устойчивость коллоидных систем	2	
	Лабораторная работа 8 Коагуляция. Порог коагуляции. Пептизация	2	7
	Лабораторная работа 9Диализ как метод мембранного разделения смесей. Очистка золей	4	
	методом диализа		
Тема 2.3	Содержание учебного материала	4/-	OK 01, OK02,
Растворывысоко	1 Общая характеристика растворов ВМС. Вязкость ВМС. Факторы, влияющие на процесс	4	OK03, OK 04-
-молекулярных	набухания. Коагуляция растворов ВМС.		OK 07, OK 09,
соединений	2 Строение мицелл коллоидных ПАВ.		ПК 1.1, ПК 1.2,
(BMC)	Особенности поведения коллоидных растворов ПАВ, практическое значение		ПК 1.4, ПК 3.3.
Самостоятельна	я работа	2	
Консультация		2	
Промежуточная	аттестация в форме экзамена	6	
ВСЕГО			

3 УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Для реализации программы учебной дисциплины предусмотрены следующие специальные помещения:

Лаборатория «Химии кремния, физической и коллоидной химии», в соответствии с п. 6.1.2.3 примерной образовательной программы по специальности 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий.

I Специализированная мебель и системы хранения (при необходимости)

Основное оборудование

- 1 Стол преподавателя
- 2 Стул компьютерный
- 3 Столы ученические
- 4 Стулья ученические
- 5 Доска меловая (магнитная)
- 6 Стеллаж книжный

Дополнительное оборудование

- 1 Рециркулятор воздуха бактерицидный
- 2 УФ-лампа

II Технические средства (при необходимости)

Основное оборудование

- Персональный компьютер с пакетом лицензионного и свободно распространенного программного обеспечения:
 - операционная система
 - антивирусное ПО
 - офисный пакет
 - архиватор
 - браузер
- 2 Проектор
- 3 Принтер, сканер (МФУ)
- 4 Аудио колонки
- 5 Экран

III Специализированное оборудование, мебель и системы хранения

Основное оборудование

- 1 Сейф для хранения реактивов.
- 2 Вытяжной шкаф

Дополнительное оборудование

- Шкафы для хранения химической посуды, приборов и инструментов
- 2 Медицинская аптечка

IV Демонстрационные учебно-наглядные пособия²

Основное оборудование

- 1 Модели, приборы и наборы для постановки демонстрационного и ученического лабораторного эксперимента.
- 2 Комплект учебно-наглядных пособий.

3.2. Информационное обеспечение реализации программы

Для реализации программы библиотечный фонд образовательной организации должен иметь печатные и/или электронные образовательные и информационные ресурсы, для использования в образовательном процессе. При формировании библиотечного фонда образовательной организацией выбирается не менее одного издания из перечисленных ниже

печатных изданий и (или) электронных изданий в качестве основного, при этом список может быть дополнен новыми изданиями.

3.2.1. Основные печатные издания

- 1. Белик В.В. Физическая и коллоидная химия (4-е изд.). М.: Издательский центр «Академия», 2021г. 288с. ISBN 978-5-4468-9945-6. Текст: непосредственный.
- 2. Борщевский А.Я. Физическая химия. Многотомное издание. Том 1 (2020, 2021, 2023), 606с., Том 2 (2019, 2021, 2023). <u>Химическая термодинамика.</u> Термохимия. Равновесия. Физико-химический анализ. Учебник. М.: НИЦ ИНФРА-М. 2023, 383с. ISBN: 978-5-16-011788-1. Текст: непосредственный.

3.2.2. Основные электронные издания

3.2.3. Дополнительные источники (при необходимости)

1.Ищенко А.А. Аналитическая химия (3-е изд.) учебник. – М.: Издательский центр «Академия», 2021. – 480с. – ISBN 978-5-4468-9944-9. – Текст: непосредственный.

 $2.\Phi$ изическая химия тугоплавких неметаллических и силикатных материалов: учебник / И. Д. Кащеев, К. Г. Земляной, И. А. Павлова, Е. П. Фарафонтова; под общей редакцией И. Д. Кащеева : Издательство Уральского университета, 2022. - 400 с. — (Учебник УрФУ). — ISBN 978-5-7996-3476-6. — Текст: непосредственный.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

учеьной дисциплины					
Результаты обучения Знать:	Помочетрунуют оченки	Методы оценки			
	Демонстрирует знания:	Оценка преподавателя			
- закономерности протекания химических и	- закономерностей протекания	результатов			
	химических и физико-	выполнения			
физико-химических процессов;	химических процессов;	практических.			
- законы идеальных газов;	- законов идеальных газов;	0			
- механизм действия	- механизма действия	Оценка преподавателя			
катализаторов;	катализаторов;	результатов			
- механизмы гомогенных и	- механизма гомогенных и	выполнения			
гетерогенных реакций;	гетерогенных реакций;	лабораторных работ.			
- основы физической и коллоидной	- основ физической и	0			
химии, химической кинетики,	коллоидной химии, химической	Оценка преподавателя			
электрохимии, химической	кинетики, электрохимии,	письменных			
термодинамики и термохимии;	химической термодинамики и	самостоятельных			
- основные методы	термохимии;	работ.			
интенсификации физико-	- основных методов	0			
химических процессов;	интенсификации физико-	Оценка			
- свойства агрегатных состояний	химических процессов;	преподавателем			
веществ;	- свойств агрегатных состояний	результатов экзамена			
- сущность и механизм катализа;	веществ;	по освоению			
- схемы реакций замещения и	- сущности и механизма	дисциплины.			
присоединения;	катализа;				
- условия химического равновесия;	- схем реакций замещения и				
- физико-химические методы	присоединения;				
анализа веществ,	- условий химического				
- применяемые приборы;	равновесия;				
- физико-химические свойства	- физико-химических методов анализа веществ,				
сырьевых материалов и продуктов	анализа вещесть; - применяемых приборов;				
	- физико-химические свойства				
	сырьевых материалов и				
	продуктов				
Уметь:	- выполняет расчеты	Оценка преподавателя			
- выполнять расчеты электродных	электродных потенциалов,	результатов			
потенциалов, электродвижущей	электродных потопциалов,	выполнения			
силы гальванических элементов;	гальванических элементов;	практических работ			
- находить в справочной	- находит в справочной	mpakin leekin paooi			
литературе показатели физико-	литературе показатели физико-	Оценка преподавателя			
химических свойств веществ и их	химических свойств веществ и	результатов			
соединений;	их соединений;	выполнения			
- определять концентрацию	- определяет концентрацию	лабораторных работ.			
реагирующих веществ и скорость	реагирующих веществ и				
реакций;	скорость реакций;	Оценка преподавателя			
- строить фазовые диаграммы;	- строит фазовые диаграммы;	письменных			
- производить расчеты:	- производит расчеты:	самостоятельных			
параметров газовых смесей,	параметров газовых смесей,	работ.			
кинетических параметров	кинетических параметров	F			
химических реакций, химического	химических реакций,	Оценка			
	химического равновесия;	преподавателем			
равновесия;	- рассчитывает тепловые	результатов экзамена			
- рассчитывать тепловые эффекты	- pace-итывает тепловые	pesymbiatob sitsumena			

и скорость химических реакций;	эффекты и скорость химических	по освоению
- определять параметры	реакций;	дисциплины.
каталитических реакций;	- определяет параметры	
	каталитических реакций;	