Задание для обучающихся с применением дистанционных образовательных технологий и электронного обучения

Дата 30.04

Группа Э-17

Междисциплинарный курс: *МДК.01.03* Электрическое и электромеханическое оборудование

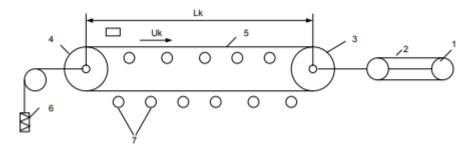
Тема занятия: Основные понятия о поточно-транспортных системах Расчет мощности двигателей

Форма: лекция

ЭиЭМО-98 лекция

Тема: Основные понятия о поточно-транспортных системах Расчет мощности двигателей

1 Задание:


- Изучить поточно-транспортную систему и составить конспект по материалу лекции «Основные понятия о поточно-транспортных системах» акцентировать внимание на вопросах
- 1 Что представляет собой поточно транспортная система (ПТС)?
- 2 Из какого оборудования состоит ПТС?
- 3 Какие технологические требования предъявляют к ПТС?
- 4 Какие электротехнические требования предъявляют к ПТС?
- 5 Перечислите виды управления ПТС
- Записать пример расчета и выбора двигателя для поточно транспортной системы в конспект

2 ЛЕКЦИЯ

Основные теоретические сведения

Конвейером называется механизм непрерывного транспорта предназначенный для межоперационных перемещений внутри цехов и между цехами различных заготовок, деталей, сборочных единиц.

Основные конструктивные элементы конвейера

- 1 электродвигатель
- 2 ременная передача
- 3 ведущий барабан
- 4 ведомый барабан
- 5 тяговый орган
- 6 груз для натяжения ленты
- 7 опорные ролики
- 1, 2, 3 приводная станция конвейера.

Поточно-транспортной системой называется комплекс механизмов технологического оборудования, устройств, предназначенных для обработки и транспортирования материалов, заготовок деталей и узлов машин или для сборки машин в едином непрерывном технологическом процессе.

Оборудование ПТС состоит из:

- 1. Транспортирующих механизмов, к которым относятся различные типы конвейеров,
- 2. Перегрузочных устройств предназначенных для перегрузки материалов или заготовок, деталей.
- 3. Механизмов основной технологии предназначенных для различных видов обработки материалов, например печи периодического действия.

Технологические требования, предъявляемые к ПТС:

- 1. Пуск двигателей конвейеров должен осуществляться в направлении обратному технологическому потоку, т.е. сначала включается головной, затем промежуточный, последним включается принимающий.
- 2. Остановка двигателей конвейеров должна осуществляться в направлении технологическому потоку, т.е. сначала отключается принимающий, затем промежуточный, последним, головной конвейер.

- 3. При остановке одного конвейера двигателей других конвейеров , подающих материал на останавливаемый сразу отключается, а двигатели других конвейеров могут продолжать работать.
- 4. Для предотвращения большого снижения напряжения питающей сети при пуске двигателей должна соблюдаться поочередность пуска.
- 5. Пуск механизмов должен осуществляться с одного диспетчерского пункта оборудованного аппаратурой управления и контроля, а также мнемосхемой технологического прогресса. Перед пуском механизмов диспетчер должен предупредить персонал с помощью предупредительных сигналов, сирены или звонка.
- 6. Остановка механизмов должна производиться, как с диспетчерского пункта, так и с рабочих мест персонала при несчастных случаях и авариях.
- 7. На наклонных конвейерах, элеваторах и скребковых конвейерах предусматривается автоматическое включение тормоза для устранения движения тягового орлана под действием веса материала.
- 8. Вспомогательные электроприводы (вентиляторы, маслонасосы и т.д.) включаются перед пуском главных приводов.
- 9. Дозаторы автоматически должны отключать конвейеры при прекращении или изменения режима работы ПТС.
- 10.Механизмы с тяжелым пуском (дробилки) должны иметь блокировку разрешающую повторное включение, после отключения конвейеров подающих материал до механизма.

Электротехнические требования, предъявляемые к ПТС:

- 1. Контроль напряжения в схеме заполнения бункеров для исключения завала при исчезновении напряжения.
- 2. Для предотвращения последствии однофазного короткого замыкания на землю проводов цепи управления и произвольного включения механизмов следует выполнять цепь на U-220 В в системе 380/220 В.
- 3. В целях управления должна быть предусмотрена нулевая защита, т.е. исключение самозапуска двигателей.
- 4. Аппараты защиты цепей управления должны исключать самопроизвольный запуск двигателей при коротких замыканиях в цепях управления.
 - 5. Контроль обрыва цепей управления и ввод резервных механизмов.

Виды управления ПТС

- 1. Местное управление управление у места его установки без наличия блокировок с другими механизмами.
- 2. Местное сблокированное управление управление несколькими механизмами, связанные между собой блокировочными связями.

- 3. Диспетчерское централизованное управление (ДЦУ) это управление и контроль за механизмами диспетчером из диспетчерского пункта.
- 4. Диспетчерским автоматизированным управлением (ДАУ) управление и контроль за механизмами из диспетчерского пункта с диспетчером с применением средств автоматики.
- 5. Автоматическое управление управление и контроль за работой механизмов только средствами автоматики, но под общим наблюдением диспетчера.

Методические указания к решению задач

Ленточный транспортер или конвейер

Мощность двигателя определяется по формуле:

$$P = \frac{K \cdot Q}{270 \cdot n} \cdot (cL + H), \text{кВт}$$

где Q- производительность транспортера, т/ч;

L - длина транспортера между барабанами, м;

Н-высота подъема транспортера, м;

K-коэффициент запаса ($K = 1.2 \div 1.3$);

 η - КПД механизма (η = 0,75÷0,8);

с - расчетный коэффициент, принимаемый по таблице 1.

Таблица 1 - Значение коэффициента **с**, для определения мощности ленточных конвейеров

I						
L, м/Q, т/ч	10	20	50	100	200	400
10	2,00	1,40	0,92	0,67	0,50	0,37
50	0,66	0,50	0,35	0,27	0,22	0,18
125	0,35	0,28	0,21	0,17	0,14	0,12

Пластинчатый транспортер или конвейер

Мощность (кВт) двигателя определяется по формуле:

$$P = \frac{c \cdot K \cdot Q \cdot L}{270 \cdot \eta}$$

где с – расчетный коэффициент, принимаемый по таблице 2.

Таблица 2 - Значение коэффициента **c**, для определения мощности пластинчатых конвейеров

Ширина ленты, м	Производительность	С	
	транспортера Q, т/ч		
0,4	17	0,32	
0,6	40	0,10	
0,8	62	0,16	
1,0	78	0,14	
1,2	97	0,03	

Ковшовый транспортер (элеватор)

Мощность (кВт) двигателя определяется по формуле:

$$P = \frac{K \cdot Q \cdot H}{270 \cdot \eta}$$

где $\eta - K\Pi Д$ элеваторной установки - $\eta = 0.3 \div 0.5$.

Винтовой транспортер (шнек)

Мощность двигателя (кВт) находится по формуле:

$$P = \frac{K \cdot Q \cdot H}{270 \cdot \eta}$$

где с — расчетный коэффициент, принимаемый для малоабразивных материалов (зерно и др.) равным $1,8 \div 2,5$; для абразивных материалов (песок, гравии и др.) равным $3 \div 3,5$;

 η - к. п. д. механизма ($\eta = 0.7 \div 0.8$).

Транспортеры

Мощность (кВт) двигателя транспортера определяется по формуле

$$P = \frac{K_3 \cdot Q}{1000 \cdot \eta_{\mathrm{M}} \cdot (\mathbf{c} \cdot L + H)}$$

где K_3 - коэффициент запаса мощности транспортера ($1,1 \div 1,25$);

Q- производительность транспортера, H/c;

L- расстояние между осями концевых барабанов, м;

Н – высота подъема грузов, м;

 $\eta_{\rm M}$ - коэффициент полезного действия механизма редуктора ($0.7 \div 0.85$); с - $(1.5 \div 2)$ – для скребкового транспортеров ;

с - расчетный коэффициент, принимаемый для пластинчатых транспортеров — $0.14 \div 0.32$.

Мощность (кВт) двигателя шнеков определяют по формуле

$$P = \frac{K_3 \cdot Q}{1000 \cdot \eta_{M} \cdot (kc \cdot L + H)}$$

где kc – коэффициент сопротивления материала: kc = 1,85÷2,0 для необразивного (зерно и т.д.) kc = 2,5 для малообразивного; kc = 3,2 для образивного (песок, гравий, цемент); kc = 4 для сильноабразивного и липкого (зола, известь, сера, формовочная земля)

Для перемещения груза в вертикальном направлении применяют в основном элеваторы.

Мощность (кВт)двигателя элеваторов определяют по формуле

$$P = \frac{K_3 \cdot Q \cdot H}{1000 \cdot \eta_{\rm M}}$$

где K_3 — коэффициент запаса по мощности (принимается 1,2 \div 1,5). Значение КПД ($\eta_{\rm M}$) элеватора принимается в пределах 0,3 — 0,45

Для расчета

$$n = \frac{60 \cdot v_i}{\pi d}$$
; $P_{\text{pac4}} < P_{\text{HoM}}$; $n_{\text{pac4}} pprox n_{\text{HoM}}$

ПРИМЕР РАСЧЕТА ПТС

Пример 1

Определить мощность и выбрать двигатель для ленточного конвейера для разгрузки сыпучих материалов. L = 50 м; угол наклона α =15; Q =10 т/ч.

Решение

Определяем высоту подъема при заданном угле наклона $\alpha = 15$;

$$H = L \cdot \sin \alpha = 50 \cdot 0.26 = 13 \text{ M}$$

Определяем по таблице1 значение коэффициента с=0,66 для L=50 м, Q=10 т/ч. Принимаем величину КПД η =0,8; коэффициент запаса K=1,2. Определяем мощность двигателя ленточного конвейера:

$$P = \frac{1,2 \cdot 10}{270 \cdot 0,8} \cdot (0,66 \cdot 50 + 13) = 2,6 \text{ KBT}$$

По справочнику выбираем двигатель закрытого исполнения типа АОП-2-41-6 мощностью 3кВт, скорость 960 об/мин, напряжение 380 В, ток 8,85 А, $\eta_{\rm H}$ =0,81, $\cos \varphi = 0.65$.

- 3 Форма отчета: фото конспекта лекции
- 4 Срок выполнения задания 30.04

Получатель отчета: kudryashova.ta@mail.ru