Приложение

к программе СПО 18.02.05 «Производство тугоплавких неметаллических и силикатных материалов и изделий»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И МОЛОДЕЖНОЙ ПОЛИТИКИ СВЕРДЛОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СВЕРДЛОВСКОЙ ОБЛАСТИ «БОГДАНОВИЧСКИЙ ПОЛИТЕХНИКУМ»

УТВЕРЖДАЮ

Директор ГАПОУ СО «Богдановичский политехникум»

« 26 » споре 2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП.06 ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ

Специальность 18.02.05 «Производство тугоплавких неметаллических и силикатных материалов и изделий»

Форма обучения очная, группа Т-20 Срок обучения 3 года 10 месяцев Рабочая программа учебной дисциплины ОП.06 «Физическая и коллоидная химия» разработана на основе федерального государственного образовательного стандарта среднего профессионального образования по специальности 18.02.05 «Производство тугоплавких неметаллических и силикатных материалов и изделий» утвержденного приказом Минобрнауки РФ от 07 мая 2014 г. №435 (далее — ФГОС СПО).

Организация-разработчик:

Государственное автономное профессиональное образовательное учреждение Свердловской области «Богдановичский политехникум»

Автор:

Глебова А.В., преподаватель первой квалификационной категории ГАПОУ СО «БПТ»

СОДЕРЖАНИЕ

1	ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	5
3	УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	11
4	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ЛИСПИПЛИНЫ	13

1 ОБЩАЯ ХАРАКТЕРИСТИКА РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОП 06. Физическая и коллоидная химия

1.1. Место дисциплины в структуре основной образовательной программы:

Учебная дисциплина «Физическая и коллоидная химия» является обязательной частью обще профессионального цикла основной образовательной программы в соответствии с $\Phi\Gamma$ ОС по специальности 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий.

Учебная дисциплина «Физическая и коллоидная химия» обеспечивает формирование профессиональных и общих компетенций по всем видам деятельности ФГОС по специальности 18.02.05 Производство тугоплавких неметаллических и силикатных материалов и изделий.

Особое значение дисциплина имеет при формировании и развитии ОК: ОК 1 - 9

1.2. Цель и планируемые результаты освоения дисциплины:

В рамках программы учебной дисциплины обучающимися осваиваются умения и знания

Код ¹ ПК, ОК	Умения	Знания
OK 1 – OK 9; IIK 1.1 – 1.4; 2.1-2.2; 3.1 – 3.3; 4.1 –4.3	- выполнять расчеты электродных потенциалов, электродвижущей силы гальванических элементов; - находить в справочной литературе показатели физикохимических свойств веществ и их соединений; - определять концентрацию реагирующих веществ и скорость реакций; - строить фазовые диаграммы; - производить расчеты: параметров газовых смесей, кинетических параметров химических реакций, химического равновесия; - рассчитывать тепловые эффекты и скорость химических реакций; - определять параметры каталитических реакций;	- закономерности протекания химических и физико-химических процессов; - законы идеальных газов; - механизм действия катализаторов; - механизмы гомогенных и гетерогенных реакций; - основы физической и коллоидной химии, химической кинетики, электрохимии, химической термодинамики и термохимии; - основные методы интенсификации физико-химических процессов; - свойства агрегатных состояний веществ; - сущность и механизм катализа; - схемы реакций замещения и присоединения; - условия химического равновесия; - физико-химические методы анализа веществ, - применяемые приборы; - физико-химические свойства сырьевых материалов и продуктов

¹ Приводятся только коды компетенций общих и профессиональных для освоения которых необходимо освоение данной дисциплины.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Объем образовательной программы учебной дисциплины	105
в том числе:	
теоретическое обучение	36
лабораторные работы	10
практические занятия	24
курсовая работа (проект)	-
контрольная работа	-
Самостоятельная работа ²	35
Промежуточная аттестация Экзамен	

 $^{^2}$ Самостоятельная работа в рамках образовательной программы планируется образовательной организацией с соответствии с требованиями ФГОС СПО в пределах объема учебной дисциплины в количестве часов, необходимом для выполнения заданий самостоятельной работы обучающихся, предусмотренных тематическим планом и содержанием учебной дисциплины.

2.2 Тематический план и содержание учебной дисциплины «Физическая и коллоидная химия»

Наименование разделов и тем	Содержание учебного материала и формы организации деятельности обучающихся	Объем в часах	Коды компетенций, формированию которых способствует элемент программы
1	2	3	4
Раздел 1 ФИЗИЧЕС	СКАЯ ХИМИЯ	76	
Тема 1.1	Содержание учебного материала	8	OK 1 – OK 9;
Молекулярно-	1 Основные законы газов. Уравнение состояния идеального газа. Газовая постоянная.		ПК 1.1 - 1.4;
кинетическая	Реальные газы. Уравнение Ван-дер-Ваальса. Газовые смеси. Закон Дальтона.		2.1-2.2; 3.1 -
теория трех	2 Кристаллическое и аморфное твердое состояние.		3.3; 4.1 -4.3
агрегатных	Твердое состояние вещества: признаки, кривые охлаждения жидкостей, основные типы		3.3, 4.1 -4.3
состояний	кристаллических решеток, упругость пара над твердыми телами.		
вещества	В том числе, практических занятий и лабораторных работ	4	
	1 ПЗ №1 Расчеты параметров газовых смесей по законам идеального газа		
	2 ПЗ №2 Расчеты параметров жидкостей		
	Самостоятельная работа обучающихся №1	4	
	Тематика домашних заданий:		
	Выполнение расчетных заданий к лабораторно-практическим работам, подготовка к их		
	защите.		
	Опорные конспекты:		
	1. Характеристика жидкого состояния вещества: поверхностное натяжение, вязкость		
	жидкостей, испарение и кипение жидкостей.		
Тема 1.2	Содержание учебного материала		OK 1 – OK 9;
Основы	1 Теплоемкость: удельная, объемная, молярная. Фазовые переходы первого рода.		ПК 1.1 - 1.4;
термодинамики и	Зависимость внутренней энергии и энтальпии от температуры.		2.1-2.2; 3.1 -
термохимии			3.3; 4.1 -4.3
	Взаимосвязь работы, теплоты и изменения внутренней энергии. Первое начало		3.3, 7.1 7.3
	термодинамики. Термодинамические процессы и термодинамическое равновесие.		
	3 Тепловые эффекты реакций. Термохимия.		

	Закон Гесса, его следствия, применение для определения тепловых эффектов.		
	Зависимость теплового эффекта реакции от температуры. Уравнение Кирхгофа.		
	4 Второе начало термодинамики. Термодинамические потенциалы.	1	
	Энтропия как мера необратимости процесса. Энергия Гиббса. Изменение стандартной		
	энергии Гиббса при химических реакциях.		
	В том числе, практических занятий и лабораторных работ	6	
	1 ПЗ №3 Определение теплоёмкости веществ		
	2 ПЗ №4 Выполнение расчетов по определению теплового эффекта химической реакции.		
	Определение возможности протекания реакции при стандартных условиях.		
	3 Л/р №1 Определение теплоты растворения вещества и теплоты нейтрализации.		
	Самостоятельная работа обучающихся №2	4	
	Тематика домашних заданий:		
	Выполнение расчетных заданий к лабораторно-практическим работам, подготовка к их		
	защите.		
	Опорные конспекты:		
	1. Критерии направленности процессов и равновесия в системах переменного состава.		
	Химический потенциал.		
Тема 1.3	Содержание учебного материала	8	ОК 1 – ОК 9;
Химическая	1 Скорость реакции. Факторы, влияющие на скорость химической реакции. Закон действия		ПК 1.1 - 1.4;
кинетика и	масс. Реакции первого и второго порядка. Правило Вант – Гоффа. Зависимость скорости		2.1-2.2; 3.1 -
катализ	химической реакции от температуры. Уравнение Аррениуса.	-	3.3; 4.1 -4.3
	2 Основные понятия катализа. Механизмы каталитических реакций. Гомогенный катализ.		3.3, 1.1 1.3
	Гетерогенный катализ.		
	В том числе, практических занятий и лабораторных работ	4	
	1 ПЗ№5 Определение кинетических параметров химических реакций.		
	2 ПЗ№6 Определение параметров каталитических реакций. Вычисление концентрации		
	реагирующих веществ и скорости химической реакции с помощью закона действия масс		
	Самостоятельная работа обучающихся №3	4	
	Тематика домашних заданий:		
	Выполнение расчетных заданий к лабораторно-практическим работам, подготовка к их защите.		
	Опорные конспекты:		
	1. Твердофазовые реакции. Виды и физико-химические факторы, определяющие механизм		
	твердофазовых реакций.		

Тема 1.4	Содержание учебного материала	8	OK 1 – OK 9;
Химическое	1 Обратимость химических реакций. Признаки химического равновесия. Факторы,		ПК 1.1 - 1.4;
равновесие	влияющие на равновесие. Принцип Ле - Шателье.		2.1-2.2; 3.1 -
	2 Зависимость константы равновесия от температуры. Сдвиг равновесия.		3.3; 4.1 -4.3
	В том числе, практических занятий и лабораторных работ	4	3.3, 4.1 -4.3
	1 ПЗ №7 Вычисление константы равновесия для реакций в гомогенных и гетерогенных системах с использованием принципа Ле – Шателье		
	2 ПЗ №8. Вычисление параметров химической реакции с применением уравнения изотермы химической реакции.		
	Самостоятельная работа обучающихся №4	4	7
	Тематика домашних заданий:		
	Выполнение расчетных заданий к практическим работам, подготовка к их защите.		
	Опорные конспекты:		
	1. Понятие о химическом сродстве веществ. Максимальная работа химической реакции.		
	2. Методы управления химическими процессами.		
	3. Сдвиг химического равновесия. Методы интенсификации гетерогенных процессов	10	
Тема 1.5	Содержание учебного материала		
Фазовое	1 Основные понятия фазового равновесия. Равновесие в однокомпонентной системе.		
равновесие	Диаграмма состояния воды.		
	Основные типы одно-, двух- и трехкомпонентных диаграмм состояния.		
	2 Двухкомпонентные системы с образованием химических соединений. Понятие о физико- химическом анализе.		
	Условия термодинамического равновесия в многокомпонентной системе. Правило фаз		
	Гиббса. Равновесные состояния при фазовых переходах. Уравнение Клаузиуса-		
	Клайперона.		
	В том числе, практических занятий и лабораторных работ	6	
	1 ПЗ №9 Проведение расчетов с использованием фазовых диаграмм состояния с помощью правила фаз и правила рычага и их физико-химический анализ		
	2 ПЗ №10 Проведение расчетов с использованием фазовых диаграмм состояния с		
	помощью правила фаз и правила рычага и их физико-химический анализ		
	3 ПЗ №11 Проведение расчетов с использованием фазовых диаграмм состояния с		
	помощью правила фаз и правила рычага и их физико-химический анализ		
	Самостоятельная работа обучающихся №5	4	1
	Тематика домашних заданий:		

	Выполнение расчетных заданий к практическим работам, подготовка к их защите.		
	Опорные конспекты:		
	1. Графический и аналитический метод расчета количественного соотношения фаз в		
	гетерогенные системах		
Тема 1.6	Содержание учебного материала		OK 1 – OK 9;
Электрохимия	Проводники первого и второго рода. Электролиз. Окислительно-восстановительные процессы при электролизе. Законы Фарадея. Практическое использование электролиза. Электролиты. Электродные потенциалы. Правило записи для гальванических элементов и электродных реакций.		ПК 1.1 - 1.4; 2.1-2.2; 3.1 - 3.3; 4.1 -4.3
	В том числе, практических занятий и лабораторных работ	4	
	1 ПЗ №12 Вычисление электродных потенциалов и ЭДС гальванических элементов		
	2 Л/Р №2 Определение рН растворов электролитическим методом. Потенциометрическое		
	титрование по методу нейтрализации		
	Самостоятельная работа обучающихся №6	2	
	Тематика домашних заданий:		
	Выполнение расчетных заданий к практическим работам, подготовка к их защите.		
	Опорные конспекты:		
	1. Электрофизические свойства силикатов в различных состояниях. Диэлектрические и		
	магнитные свойства силикатов.		
	КОЛЛОИДНОЙ ХИМИИ	29	
Тема 2.1	Содержание учебного материала	6	OK 1 – OK 9;
Введение в	1 Признаки объектов коллоидной химии. Классификация дисперсных систем. Методы		ПК 1.1 - 1.4;
физикохимию	получения дисперсных систем: диспергирование и конденсация. Микрогетерогенные		2.1-2.2; 3.1 -
поверхностных	системы: суспензии, эмульсии, пены, аэрозоли, порошки.		3.3; 4.1 -4.3
явлений	Коллоидно-дисперсные процессы в силикатных системах		3.3, 4.1 -4.3
	2 Поверхностное натяжение. Полная поверхностная энергия. Уравнение Гиббса-		
	Гельмгольца.		
	Общие свойства поверхностных слоев. Адсорбция. Сорбция, её виды (адсорбция на		
	границе жидкость-газ, жидкость-жидкость, обменная адсорбция и др.)		
	Практическое применение процессов адсорбции. Понятие о хроматографическом		
	анализе.		
	Адгезия, смачивание и растекание		
	В том числе, практических занятий и лабораторных работ	2	
	1 Л/Р №3 Определение поверхностного натяжения жидкости		

	Самостоятельная работа обучающихся №7	4	
	Выполнение расчетных заданий к лабораторно-практическим работам, подготовка к их		
	защите.		
	Тематика домашних заданий:		
	Опорные конспекты:		
	1. Влияние дисперсности на внутреннее давление в телах. Капиллярные явления.		
	2. Новейшие методы подготовки тонкодисперсных однородных порошков		
Тема 2.2	Содержание учебного материала	8	OK 1 – OK 9;
Коллоидные	1 Получение коллоидных систем. Коллоидное состояние. Очистка коллоидных систем.		ПК 1.1 - 1.4;
системы и их	Строение коллоидной частицы – мицеллы гидрозоля. Двойной электрический слой.		2.1-2.2; 3.1
свойства	2 Оптические свойства коллоидных систем: явление рассеяния света, поглощение света и		3.3; 4.1 -4.3
	окраска золей.		3.3, 4.1 -4.3
	Молекулярно-кинетические свойства коллоидных систем. Седиментация.		
	В том числе, практических занятий и лабораторных работ	4	
	1 Л/Р №4 Электрокинетические явления. Устойчивость коллоидных систем.		
	2 Л/Р №5 Коагуляция. Порог коагуляции. Пептизация.		
	Самостоятельная работа обучающихся №8	4	
	Самостоятельная работа обучающихся		
	Тематика домашних заданий:		
	Выполнение расчетных заданий к лабораторно-практическим работам, подготовка к их		
	защите.		
Тема 2.3	Содержание учебного материала	2	ОК 1 – ОК 9;
Растворы 1 Общая характеристика растворов ВМС. Вязкость ВМС. Факторы, влияющие на			ПК 1.1 - 1.4;
высокомолекуляр	набухания. Коагуляция растворов ВМС. Строение мицелл коллоидных ПАВ.		2.1-2.2; 3.1
ных соединений	Особенности поведения коллоидных растворов ПАВ, практическое значение		· ·
(BMC)	Самостоятельная работа обучающихся №9	5	3.3; 4.1 -4.3
	Тематика домашних заданий:		
	Подготовка к экзамену		
Всего:		105	

3 УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Для реализации программы учебной дисциплины предусмотрены следующие специальные помещения:

Лаборатория физической и коллоидной химии, оснащенная оборудованием:

- -Доска меловая (магнитная).
- -Лабораторные столы.
- -Набор измерительной аппаратуры.
- -Химические реактивы.
- -Химическая посуда.
- –Демонстрационные плакаты и таблицы.
 техническими средствами обучения:
- -проектор мультимедийный;
- -экран (антибликовый).

При реализации программы дисциплины «Физическая и коллоидная химия» используются технические возможности кабинета №38 TCO (технических средств обучения).

3.2. Информационное обеспечение реализации программы

3.2.1. Печатные издания³

- 1. Белик В.В. Физическая и коллоидная химия [Текст]: Учебник для ССУЗ / В.В. Белик, К.И. Киенская. 9-е изд., стер. М.: Издательский центр «Академия», 2015. 288 с.
- 2. Практикум по физической химии [Текст]: Учебное пособие/ Под ред. М.И. Гельфмана. СПб.: Издательство «Лань», 2004-256с.
- 3. Практикум по коллоидной химии [Текст]: Учебное пособие/ Под ред. М.И. Гельфмана. СПб.: Издательство «Лань», 2005-256с.
- 4. Рабухин А.И. Савельев В.Г. Физическая химия тугоплавких неметаллических и силикатных соединений. [Текст]: Учебник. М.: ИНФРА-М, 2004. 304с.

3.2.2. Электронные издания (электронные ресурсы)

- 5. Аналитическая химия: учеб. для студ. учреждений сред. проф. образования [Электронный ресурс] / [Ю.М.Глубокое, В.А.Головачева, Ю.А.Ефимова и др.;] под ред. А.А.Ищенко. 8-е изд., стер. М.: Издательский центр «Академия», 2012. 320с.
- 6. Романков П.Г., Фролов В.Ф., Флисюк О.М. Методы расчета процессов и аппаратов химической технологии (примеры и задачи) [Электронный ресурс]: Учебное пособие для вузов. 2-е изд., испр. СПб.: ХИМИЗДАТ, 2009. 544с.

3.2.3. Дополнительные источники

1. Габриелян О.С. Химия для профессий и специальностей технического профиля [Электронный ресурс]: учебник / О.С.Габриелян, И.Г. Остроумов. — 6-е изд., стер. — М.: Издательский центр «Академия», 2013. — 256с.

2. Гамеева О.С. Физическая и коллоидная химия [Текст] / Гамеева О.С -М: Высшая школа, 1977.-380 с.

3.Гамеева О.С.Сборник задач и упражнений по физической и коллоидной химии [Текст] /Гамеева О.С -М: Высшая школа, 1980.- 300с.

³ Образовательная организация при разработке основной образовательной программы, вправе уточнить список изданий, дополнив его новыми изданиями и/или выбрав в качестве основного одно из предлагаемых в базе данных учебных изданий и электронных ресурсов, предлагаемых ФУМО СПО, из расчета не менее одного издания по учебной дисциплине.

- 4. Горшков, В.И. Основы физической химии [Электронный ресурс] / В.И. Горшков, И.А. Кузнецов. М.: БИНОМ, 2006.-407 с.
- 5. Горшков В.С. Физическая химия силикатов и других тугоплавких соединений [Текст] / В.С. Горшков, В.Г. Савельев, Н.Ф. Федоров. М: Высшая школа, 1988.-400 с.
- 6. Еремин, В.В. Основы физической химии. Теория и задачи [Электронный ресурс] / В.В. Еремин, С.И. Каргов, И.А. Успенская, Н.Е. Кузьменко, В.В. Лунин. М.: Экзамен, 2005. 480 с.
- 7.3имон, А.Д. Коллоидная химия: учебник для вузов [Электронный ресурс] / А.Д. 3имон. М.: Агар, 2007. 344 с.
- 8. Коллоидная химия: учебник [Электронный ресурс] / М. И. Гельфман. СПб.: Лань, 2010. 336 с.
- 9. Кругляков, П.М. Физическая и коллоидная химия [Электронный ресурс] / П.М. Кругляков, Т.Н. Хаскова. М.: Высш. шк., 2005. 319 с.
- 10. Лукьянов А.Б. Физическая и коллоидная химия [Текст]: Учебник для техникумов. — 2-е изд., перераб. и доп. — М.: Химия, 1988. — 288 с.
- 11.Сумм Б.Д. Основы коллоидной химии [Текст]: Учебное пособие для студентов / Б.Д. Сумм. М.: Издательский центр «Академия», 2006. 240 с.
- 12.Щукин, Е. Д. Коллоидная химия [Электронный ресурс] / Е.Д. Щукин, А.В. Перцов, Е.А. Амелина. М.: Высш. шк., 2004.-445 с.

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОИ ДИСЦИПЛИНЫ				
Результаты обучения	Критерии оценки	Методы оценки		
Перечень знаний, осваиваемых в	Демонстрирует знания:	Оценка результатов		
рамках дисциплины:	- закономерностей протекания	выполнения		
- закономерности протекания	химических и физико-химических	практической работы		
химических и	процессов;			
физико-химических процессов;	- законов идеальных газов;	Оценка выполнения		
- законы идеальных газов;	- механизма действия	лабораторных работ.		
- механизм действия катализаторов;	катализаторов;			
- механизмы гомогенных и	- механизма гомогенных и	Промежуточная		
гетерогенных реакций;	гетерогенных реакций;	аттестация (экзамен)		
- основы физической и коллоидной	- основ физической и коллоидной			
химии, химической кинетики,	химии, химической кинетики,			
электрохимии, химической	электрохимии, химической			
термодинамики и термохимии;	термодинамики и термохимии;			
- основные методы	- основных методов			
интенсификации физико-химических	интенсификации физико-			
процессов;	химических процессов;			
- свойства агрегатных состояний	- свойств агрегатных состояний			
веществ;	веществ;			
- сущность и механизм катализа;	- сущности и механизма катализа;			
- схемы реакций замещения и	- схем реакций замещения и			
присоединения;	присоединения;			
- условия химического равновесия;	- условий химического равновесия;			
- физико-химические методы	- физико-химических методов			
анализа веществ,	анализа веществ,			
- применяемые приборы;	- применяемых приборов;			
- физико-химические свойства	- физико-химические свойства			
сырьевых материалов и продуктов	сырьевых материалов и продуктов			
Перечень умений, осваиваемых в	- выполняет расчеты электродных	Оценка результатов		
рамках дисциплины:	потенциалов, электродвижущей	выполнения		
- выполнять расчеты электродных	силы гальванических элементов;	практической работы		
потенциалов, электродвижущей силы	- находит в справочной литературе			
гальванических элементов;	показатели физико-химических	Оценка выполнения		
- находить в справочной литературе	свойств веществ и их соединений;	лабораторных работ.		
показатели физико-химических	- определяет концентрацию			
свойств веществ и их соединений;	реагирующих веществ и скорость	Промежуточная		
- определять концентрацию	реакций;	аттестация (экзамен)		
реагирующих веществ и скорость	- строит фазовые диаграммы;			
реакций;	- производит расчеты: параметров			
- строить фазовые диаграммы;	газовых смесей, кинетических			
- производить расчеты: параметров	параметров химических реакций,			
газовых смесей, кинетических	химического равновесия;			
параметров химических реакций,	- рассчитывает тепловые эффекты			
химического равновесия;	и скорость химических реакций;			
- рассчитывать тепловые эффекты и	- определяет параметры			
скорость химических реакций;	каталитических реакций;			
- определять параметры				
каталитических реакций;				